The Relationship between VO2 and Muscle Deoxygenation Kinetics and Upper Body Repeated Sprint Performance in Trained Judokas and Healthy Individuals

Author:

Antunes AndréORCID,Domingos ChristopheORCID,Diniz Luísa,Monteiro Cristina P.ORCID,Espada Mário C.ORCID,Alves Francisco B.,Reis Joana F.ORCID

Abstract

The present study sought to investigate if faster upper body oxygen uptake (VO2) and hemoglobin/myoglobin deoxygenation ([HHb]) kinetics during heavy intensity exercise were associated with a greater upper body repeated-sprint ability (RSA) performance in a group of judokas and in a group of individuals of heterogenous fitness level. Eight judokas (JT) and seven untrained healthy participants (UT) completed an incremental step test, two heavy intensity square-wave transitions and an upper body RSA test consisting of four 15 s sprints, with 45 s rest, from which the experimental data were obtained. In the JT group, VO2 kinetics, [HHb] kinetics and the parameters determined in the incremental test were not associated with RSA. However, when the two groups were combined, the amplitude of the primary phase VO2 and [HHb] were positively associated with the accumulated work in the four sprints (ΣWork). Additionally, maximal aerobic power (MAP), peak VO2 and the first ventilatory threshold (VT1) showed a positive correlation with ΣWork and an inverse correlation with the decrease in peak power output (Dec-PPO) between the first and fourth sprints. Faster VO2 and [HHb] kinetics do not seem to be associated with an increased upper body RSA in JT. However, other variables of aerobic fitness seem to be associated with an increased upper body RSA performance in a group of individuals with heterogeneous fitness level.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3