Author:
Wang Zhe,Guan Shuai,Wang Yajuan,Li Wen,Shi Ke,Li Jiake,Xu Zhiqiang
Abstract
Recovery of phosphorus from sludge will help to alleviate the phosphorus resource crisis. However, the release of phosphorus from sludge is accompanied by the leaching of large amounts of coexisting ions, i.e., Fe, Al, Ca, and organic matter, which decreases the purity of sludge-derived products. In this study, an adsorption-desorption process using magnetic zirconia (MZ) as the adsorbent is proposed to obtain a high purity recovery product. The process involves selective adsorption of phosphate from the hydrothermally treated sludge supernatant (HTSS) using MZ, followed by desorption and precipitation to obtain the final product: struvite. The results indicated that at a dosage of 15 g/L, more than 95% of phosphorus in the HTSS could be adsorbed by MZ. Coexisting ions (Ca2+, Mg2+, Fe3+, Al3+, SO42−, NO3−, Cl−, etc.) and organic matter (substances similar to fulvic and humic acid) in the HTSS had a limited inhibitory effect on phosphate adsorption. Using a binary desorption agent (0.1 mol/L NaOH + 1 mol/L NaCl), 90% of the adsorbed phosphorus could be desorbed. Though adsorption-desorption treatment, struvite purity of the precipitated product increased from 41.3% to 91.2%. Additionally, MZ showed good reusability, maintaining a >75% capacity after five cycles. X-ray photoelectron spectroscopy (XPS) indicated that MZ adsorbed phosphate mainly by inner-sphere complexation. This study provided a feasible approach for the recovery of phosphorus from sludge with high purity.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Shaanxi Postdoctoral Science Foundation
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献