Integrated Analysis of Behavioural and Health COVID-19 Data Combining Bayesian Networks and Structural Equation Models

Author:

Kenett Ron S.ORCID,Manzi GiancarloORCID,Rapaport Carmit,Salini SilviaORCID

Abstract

The response to the COVID-19 pandemic has been highly variable. Governments have applied different mitigation policies with varying effect on social and economic measures, over time. This article presents a methodology for examining the effect of mobility restriction measures and the association between health and population activity data. As case studies, we refer to the pre-vaccination experience in Italy and Israel. Facing the pandemic, Israel and Italy implemented different policy measures and experienced different population behavioral patterns. Data from these countries are used to demonstrate the proposed methodology. The analysis we introduce in this paper is a staged approach using Bayesian Networks and Structural Equations Models. The goal is to assess the impact of pandemic management and mitigation policies on pandemic spread and population activity. The proposed methodology models data from health registries and Google mobility data and then shows how decision makers can conduct scenario analyses to help design adequate pandemic management policies.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elevating theoretical insight and predictive accuracy in business research: Combining PLS-SEM and selected machine learning algorithms;Journal of Business Research;2024-02

2. Integration of Structural Equation Models and Bayesian Networks for Cognitive Load Modeling;2023 IEEE Symposium Series on Computational Intelligence (SSCI);2023-12-05

3. Information Quality of Applied Research;Wiley StatsRef: Statistics Reference Online;2023-08-28

4. Uncovering the behavioral determinants behind private car purchase intention during the new normal of COVID-19: An empirical investigation in China;Mathematical Biosciences and Engineering;2023

5. Big Data, Decision Models, and Public Health;International Journal of Environmental Research and Public Health;2022-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3