Abstract
Coal is affected by the concentrated stress disturbance of mining, the disturbance of drilling hole formation, and the concentrated stress of coal shrinkage and splitting of gas desorption from the hole wall; these result in a large number of secondary cracks that collect and leak gas. As a result, it is difficult for the coal seam sealing process to meet engineering quality sealing requirements, which results in problems such as low gas concentration during the extraction process. In this paper, based on the analysis of coal pore and fissure characteristics, and in view of the current situation of gas drainage and sealing in this coal seam, combined with the existing grouting and sealing technology, it is proposed to use pressure grouting and sealing to realize the sealing of deep coal bodies in the hole wall. According to the field conditions, the experimental pressure sealing parameter index is as follows: theoretical sealing length L1 = 9.69 m, the sealing length L2 = 13.98 m is verified, and the final sealing length is determined to be 15 m; the sealing radius is determined to be 0.6 m; the cement slurry was prepared on site with a water: cement ratio of 2:1; PG = 0.43 MPa was calculated; the range of the slurry diffusion radius R was 93.4–176.6 cm; the grouting pressure was determined to be 0.516 MPa. Field application practice has proved that: (1) Under the same drilling parameters and sealing parameters, the gas drainage effect of drilling with pressure sealing is 2.3 times higher than that without pressure sealing; (2) Using traditional sealing technology for drilling holes, the gas extraction concentration is far lower than the sealing operation effect of using the pressure sealing process; (3) Reasonably extending the length of the gas extraction drilling and sealing is a basic guarantee for realizing a substantial increase in the gas extraction concentration; (4) Sealing with pressure leads to a reliable and stable hole process.
Funder
National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献