Effects of Iron Powder Addition and Thermal Hydrolysis on Methane Production and the Archaeal Community during the Anaerobic Digestion of Sludge

Author:

Cao Xiuqin,Wang Yibin,Liu Ting

Abstract

The conventional anaerobic digestion of sludge has the disadvantages of long digestion time and low methane production. Pretreatment is often used to mitigate these problems. In this study, three pretreatment methods, namely, the addition of iron powder, high-temperature thermal hydrolysis, and a combination of these methods, were compared for application with conventional continuous anaerobic digestion reactors. The results showed that pretreatment improved methane yield by 18.2–22.9%, compared to the control reactor (conventional anaerobic digestion). Moreover, it was recognized that the archaeal community in the sludge underwent significant changes after pretreatment. Specifically, the addition of iron powder reduced the diversity in the archaeal community, but increased the abundance of hydrogenotrophic methanogens without changing the community composition. Thermal hydrolysis at high temperatures had the reverse effect, as it increased the diversity of the archaeal community but inhibited the growth of acetoclastic methanogens. In the case of the combined pretreatment, the thermal hydrolysis had a dominant influence on the archaeal community. By comparing the changes in functional gene content, it was found that the functional abundance of the archaeal community in the transport and metabolism of carbohydrates, lipids, and amino acids was higher after pretreatment than in the control group.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3