Effects of Road Traffic on the Accuracy and Bias of Low-Cost Particulate Matter Sensor Measurements in Houston, Texas

Author:

Oluwadairo TemitopeORCID,Whitehead Lawrence,Symanski Elaine,Bauer CiciORCID,Carson ArchORCID,Han Inkyu

Abstract

Although PM2.5 measurements of low-cost particulate matter sensors (LCPMS) generally show moderate and strong correlations with those from research-grade air monitors, the data quality of LCPMS has not been fully assessed in urban environments with different road traffic conditions. We examined the linear relationships between PM2.5 measurements taken by an LCPMS (Dylos DC1700) and two research grade monitors, a personal environmental monitor (PEM) and the GRIMM 11R, in three different urban environments, and compared the accuracy (slope) and bias of these environments. PM2.5 measurements were carried out at three locations in Houston, Texas (Clinton Drive largely with diesel trucks, US-59 mostly with gasoline vehicles, and a residential home with no major sources of traffic emissions nearby). The slopes of the regressions of the PEM on Dylos and Grimm measurements varied by location (e.g., PEM/Dylos slope at Clinton Drive = 0.98 (R2 = 0.77), at US-59 = 0.63 (R2 = 0.42), and at the residence = 0.29 (R2 = 0.31)). Although the regression slopes and coefficients differed across the three urban environments, the mean percent bias was not significantly different. Using the correct slope for LCPMS measurements is key for accurately estimating ambient PM2.5 mass in urban environments.

Funder

National Institute of Environmental Health Sciences

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference30 articles.

1. Health Effects of Particulate Matter http://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf

2. Epidemiological time series studies of PM2.5and daily mortality and hospital admissions: a systematic review and meta-analysis

3. Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3