The Removal of Pb2+ from Aqueous Solution by Using Navel Orange Peel Biochar Supported Graphene Oxide: Characteristics, Response Surface Methodology, and Mechanism

Author:

Liu Zuwen,Yang Shi,Zhang Linan,Zeng Jinfeng,Tian Shuai,Lin Yuan

Abstract

The value-added utilization of waste resources to synthesize functional materials is important to achieve the environmentally sustainable development. In this paper, the biochar supported graphene oxide (BGO) materials were prepared by using navel orange peel and natural graphite. The optimal adsorption parameters were analyzed by response surface methodology under the conditions of solution pH, adsorbent dosage, and rotating speed. The adsorption isotherm and kinetic model fitting experiments were carried out according to the optimal adsorption parameters, and the mechanism of BGO adsorption of Pb2+ was explained using Scanning Electron Microscope (SEM-EDS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). Compared with virgin biochar, the adsorption capacity of Pb2+ on biochar supported graphene oxide was significantly increased. The results of response surface methodology optimization design showed that the order of influence on adsorption of Pb2+ was solution pH > adsorbent dosage > rotating speed. The optimal conditions were as follows: solution pH was 4.97, rotating speed was 172.97 rpm, and adsorbent dosage was 0.086 g. In the adsorption–desorption experiment, the desorption efficiency ranged from 54.3 to 63.3%. The process of Pb2+ adsorption by BGO is spontaneous and endothermic, mainly through electrostatic interaction and surface complexation. It is a heterogeneous adsorption process with heterogeneous surface, including surface adsorption, external liquid film diffusion, and intra-particle diffusion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3