Artificial Intelligence and Computer Aided Diagnosis in Chronic Low Back Pain: A Systematic Review

Author:

D’Antoni FedericoORCID,Russo FabrizioORCID,Ambrosio LucaORCID,Bacco LucaORCID,Vollero LucaORCID,Vadalà GianlucaORCID,Merone MarioORCID,Papalia Rocco,Denaro Vincenzo

Abstract

Low Back Pain (LBP) is currently the first cause of disability in the world, with a significant socioeconomic burden. Diagnosis and treatment of LBP often involve a multidisciplinary, individualized approach consisting of several outcome measures and imaging data along with emerging technologies. The increased amount of data generated in this process has led to the development of methods related to artificial intelligence (AI), and to computer-aided diagnosis (CAD) in particular, which aim to assist and improve the diagnosis and treatment of LBP. In this manuscript, we have systematically reviewed the available literature on the use of CAD in the diagnosis and treatment of chronic LBP. A systematic research of PubMed, Scopus, and Web of Science electronic databases was performed. The search strategy was set as the combinations of the following keywords: “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Neural Network”, “Computer Aided Diagnosis”, “Low Back Pain”, “Lumbar”, “Intervertebral Disc Degeneration”, “Spine Surgery”, etc. The search returned a total of 1536 articles. After duplication removal and evaluation of the abstracts, 1386 were excluded, whereas 93 papers were excluded after full-text examination, taking the number of eligible articles to 57. The main applications of CAD in LBP included classification and regression. Classification is used to identify or categorize a disease, whereas regression is used to produce a numerical output as a quantitative evaluation of some measure. The best performing systems were developed to diagnose degenerative changes of the spine from imaging data, with average accuracy rates >80%. However, notable outcomes were also reported for CAD tools executing different tasks including analysis of clinical, biomechanical, electrophysiological, and functional imaging data. Further studies are needed to better define the role of CAD in LBP care.

Funder

Research Grants of the Italian Workers’ Compensation Authority

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3