Pyrolysis Behaviors and Residue Properties of Iron-Rich Rolling Sludge from Steel Smelting

Author:

Ye Hengdi,Li Qian,Yu Hongdi,Xiang Li,Wei Jinchao,Lin FaweiORCID

Abstract

Iron-rich rolling sludge (FeRS) represents a kind of typical solid waste produced in the iron and steel industry, containing a certain amount of oil and large amounts of iron-dominant minerals. Pyrolysis under anaerobic environment can effectively eliminate organics at high temperatures without oxidation of Fe. This paper firstly investigated comprehensively the pyrolysis characteristics of FeRS. The degradation of organics in FeRS mainly occurred before 400 °C. The activation energy for pyrolysis of FeRS was extremely low, ca. 5.44 kJ/mol. The effects of pyrolytic temperature, atmosphere, heating rate, and stirring on pyrolysis characteristics were conducted. Commonly, the yield of solid residues maintained around 85 wt.%, with approximately 13 wt.% oil and 2 wt.% gas. Due to the low yield of oil and gas, their further utilization remains difficult despite CO2 introduction which could upgrade their quality. The solid residues after pyrolysis exhibited porous properties with co-existence of micropores and mesopores. Combined with the high content of zero-valent iron, magnetic property, hydrophobic characteristic, and low density, the solid residues could be further utilized for water pollution control and soil remediation. Moreover, the solid residues were suitable for sintering to recover valuable iron resources. However, the solid residues also contained certain heavy metals, such as Cd, Cr, Cu, Ni, Pb, and Zn, which might cause secondary pollution during their utilization. In particular, the toxic Cr possessed high content, which should be treated with detoxification and removal. This paper provides fundamental information for pyrolysis of FeRS and utilization of solid residues.

Funder

High Technology Leading Program of Hunan

Young Elite Scientists Sponsorship Program by Tianjin

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3