Severity Analysis of Hazardous Material Road Transportation Crashes with a Bayesian Network Using Highway Safety Information System Data

Author:

Sun Ming,Zhou Ronggui,Jiao Chengwu,Sun Xiaoduan

Abstract

Although crashes involving hazardous materials (HAZMAT) are rare events compared with other types of traffic crashes, they often cause tremendous loss of life and property, as well as severe hazards to the environment and public safety. Using five-year (2013–2017) crash data (N = 1610) from the Highway Safety Information System database, a two-step machine learning-based approach was proposed to investigate and quantify the statistical relationship between three HAZMAT crash severity outcomes (fatal and severe injury, injury, and no injury) and contributing factors, including the driver, road, vehicle, crash, and environmental characteristics. Random forest ranked the importance of risk factors, and then Bayesian networks were developed to provide probabilistic inference. The results show that fatal and severe HAZMAT crashes are closely associated with younger drivers (age less than 25), driver fatigue, violation, distraction, special roadway locations (such as intersections, ramps, and bridges), higher speed limits (over 66 mph), midnight and early morning (12:00–5:59 a.m.), head-on crashes, more than four vehicles, fire/explosion/spill, poor lighting conditions, and adverse weather conditions. The overall prediction accuracy of 85.8% suggests the effectiveness of the proposed method. This study extends machine learning applications in a HAZMAT crash analysis, which would help develop targeted countermeasures and strategies to improve HAZMAT road transportation safety.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3