Oxygen Consumption (VO2) and Surface Electromyography (sEMG) during Moderate-Strength Training Exercises

Author:

Adeel Muhammad,Chen Hung-ChouORCID,Lin Bor-ShingORCID,Lai Chien-Hung,Wu Chun-Wei,Kang Jiunn-Horng,Liou Jian-Chiun,Peng Chih-WeiORCID

Abstract

Oxygen consumption (VO2) during strength training can be predicted through surface electromyography (sEMG) of local muscles. This research aimed to determine relations between VO2 and sEMG of upper and lower body muscles to predict VO2 from sEMG during moderate-intensity strength training exercises. Of the 12 participants recruited, 11 were divided into two groups: untrained (n = 5; with no training experience) and trained (n = 6; with 2 months of training experience). On different days, each individual completed six training sessions. Each participant performed training sessions consisting of three types of dumbbell exercises: shoulder press, deadlift, and squat, while wearing a mask for indirect calorimetric measurements of VO2 using the Cortex Metalyzer 3B. sEMG measurements of the bilateral middle deltoid, lumbar erector spinae, quadriceps (rectus femoris), and hamstring (biceps femoris) muscles were recorded. The VO2 was predicted from sEMG root mean square (RMS) values of the investigated muscles during the exercise period using generalized estimating equation (GEE) modeling. The predicted models for the three types of exercises for the untrained vs. trained groups were shoulder press [QIC = 102, * p = 0.000 vs. QIC = 82, * p = 0.000], deadlift [QIC = 172, * p = 0.000 vs. QIC = 320, * p = 0.026], and squat [QIC = 76, * p = 0.000 vs. QIC = 348, * p = 0.001], respectively. It was observed that untrained vs. trained groups predicted GEE models [quasi-likelihood under an independence model criterion (QIC) = 368, p = 0.330 vs. QIC = 837, p = 0.058], respectively. The study obtained significant VO2 prediction models during shoulder press, deadlift, and squat exercises using the right and left middle deltoid, right and left lumbar erector spinae, left rectus femoris, and right and left biceps femoris sEMG RMS for the untrained and trained groups during moderate-intensity strength training exercises.

Funder

Ministry of Science and Technology Taiwan

Ministry of Education

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference32 articles.

1. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults;Kraemer;Med. Sci. Sports Exerc.,2002

2. Exercise Standards

3. ACSM Position Stand

4. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercisehttps://academiccommons.columbia.edu/doi/10.7916/D8CR5T2R

5. Weight training economy as a function of intensity of the squat and overhead press exercise;Kalb;J. Sports Med. Phys. Fit.,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3