Impact of Integrating Machine Learning in Comparative Effectiveness Research of Oral Anticoagulants in Patients with Atrial Fibrillation

Author:

Han SolaORCID,Suh Hae Sun

Abstract

We aimed to compare the ability to balance baseline covariates and explore the impact of residual confounding between conventional and machine learning approaches to derive propensity scores (PS). The Health Insurance Review and Assessment Service database (January 2012–September 2019) was used. Patients with atrial fibrillation (AF) who initiated oral anticoagulants during July 2015–September 2018 were included. The outcome of interest was stroke/systemic embolism. To estimate PS, we used a logistic regression model (i.e., a conventional approach) and a generalized boosted model (GBM) which is a machine learning approach. Both PS matching and inverse probability of treatment weighting were performed. To evaluate balance achievement, standardized differences, p-values, and boxplots were used. To explore residual confounding, E-values and negative control outcomes were used. In total, 129,434 patients were identified. Although all baseline covariates were well balanced, the distribution of continuous variables seemed more similar when GBM was applied. E-values ranged between 1.75 and 2.70 and were generally higher in GBM. In the negative control outcome analysis, slightly more nonsignificant hazard ratios were observed in GBM. We showed GBM provided a better ability to balance covariates and had a lower impact of residual confounding, compared with the conventional approach in the empirical example of comparative effectiveness analysis.

Funder

National Research Foundation of Korea

Ministry of Food and Drug Safety

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3