Author:
Yang Shuai,Hu Xinxin,You Xinyu,Zhang Wenwen,Liu Yu,Liang Wenyan
Abstract
NH4+ is often produced during the electro-reduction of NO3−, which results in inadequate total nitrogen (TN) removal during advanced sewage treatment. In this study, the electro-reduction byproduct NH4+ was oxidized and removed using sulfate radical (SO4•−)-based advanced oxidation. Persulfate (PS) was activated by electrocatalysis, using Co/AC0.9-AB0.1 particle electrodes to produce SO4•−. Results showed that when the influent concentration of NO3−-N was 20 mg/L, a PS dosage of 5.0 mM could completely oxidize NH4+ at 0.1 A (nondetectable in effluent) reducing the TN concentration from 9.22 to 0.55 mg/L. The presence of coexisting PO43−, CO32− and humic acid suppressed the oxidation and removal of NH4+. Electron spin resonance (ESR) spectra and quenching experiments revealed SO4•− as the dominant radical in the process of indirect NH4+ oxidation, while •OH radicals only had an assisting role, and the surface accumulated free radicals were responsible for the indirect oxidation of NH4+. Cyclic voltammetry (CV) curves indicated that NO3− was primarily reduced via atomic H*-mediated indirect reduction. Therefore, the activation of PS using Co/AC0.9-AB0.1 particle electrodes might be a promising alternative method for oxidizing byproduct NH4+ in the electro-reduction of NO3− and reduce TN concentration in advanced sewage treatment.
Funder
National Natural Science Foundation of China
National Water Pollution Control and Management Technology Major Projects of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献