Multi-Scale Effects of Meteorological Conditions and Anthropogenic Emissions on PM2.5 Concentrations over Major Cities of the Yellow River Basin

Author:

Zhang Jiejun,Liu PengfeiORCID,Song HongquanORCID,Miao Changhong,Yang Jie,Zhang Longlong,Dong Junwu,Liu Yi,Zhang Yunlong,Li Bingchen

Abstract

The mechanism behind PM2.5 pollution is complex, and its performance at multi-scales is still unclear. Based on PM2.5 monitoring data collected from 2015 to 2021, we used the GeoDetector model to assess the multi-scale effects of meteorological conditions and anthropogenic emissions, as well as their interactions with PM2.5 concentrations in major cities in the Yellow River Basin (YRB). Our study confirms that PM2.5 concentrations in the YRB from 2015 to 2021 show an inter-annual and inter-season decreasing trend and that PM2.5 concentrations varied more significantly in winter. The inter-month variation of PM2.5 concentrations shows a sinusoidal pattern from 2015 to 2021, with the highest concentrations in January and December and the lowest from June to August. The PM2.5 concentrations for major cities in the middle and downstream regions of the YRB are higher than in the upper areas, with high spatial distribution in the east and low spatial distribution in the west. Anthropogenic emissions and meteorological conditions have similar inter-annual effects, while air pressure and temperature are the two main drivers across the whole basin. At the sub-basin scale, meteorological conditions have stronger inter-annual effects on PM2.5 concentrations, of which temperature is the dominant impact factor. Wind speed has a significant effect on PM2.5 concentrations across the four seasons in the downstream region and has the strongest effect in winter. Primary PM2.5 and ammonia are the two main emission factors. Interactions between the factors significantly enhanced the PM2.5 concentrations. The interaction between ammonia and other emissions plays a dominant role at the whole and sub-basin scales in summer, while the interaction between meteorological factors plays a dominant role at the whole-basin scale in winter. Our study not only provides cases and references for the development of PM2.5 pollution prevention and control policies in YRB but can also shed light on similar regions in China as well as in other regions of the world.

Funder

Natural Science Foundation of China

Natural Science Foundation of Henan

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3