Subclinical Hearing Deficits in Noise-Exposed Firefighters

Author:

Snapp Hillary A.ORCID,Schaefer Solle Natasha,Millet BarbaraORCID,Rajguru Suhrud M.

Abstract

Noise-induced hearing loss (NIHL) is the most prevalent occupational disease in the world and firefighters are at increased risk of NIHL due to their frequent exposure to hazardous levels of noise during service. Adverse effects of NIHL include acceleration of age-related hearing loss and an increased risk of cognitive decline. A critical challenge in addressing NIHL is the delayed clinical presentation of symptoms and lack of sensitive tools for early detection. To study the early clinical symptoms of NIHL in this high-risk group, we collected hearing function data including behavioral audiometric thresholds and distortion product otoacoustic emissions (DPOAEs) in 176 firefighters during annual physical assessments. Results revealed significant deficits in cochlear outer hair cell function in the presence of normal audiograms. Additionally, 55% of firefighters self-reported changes in hearing, while 20% self-reported concerns about their balance. This study is the first to characterize DPOAEs in firefighters who display decreased DPOAE amplitudes with increasing years in the fire service. These effects were observed even when controlling for hearing loss and age and are suggestive of a link between hearing loss and occupational exposure to hazardous noise.

Funder

University of Miami CTSI, U-LINK

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peripheral vestibular loss in noise-exposed firefighters;Frontiers in Integrative Neuroscience;2023-10-02

2. Prevalence of Hearing Loss and Perceptions of Hearing Health and Protection among Florida Firefighters;International Journal of Environmental Research and Public Health;2023-02-21

3. Monitoring Occupational Noise Exposure in Firefighters Using the Apple Watch;International Journal of Environmental Research and Public Health;2023-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3