Location Optimization of COVID-19 Vaccination Sites: Case in Hillsborough County, Florida

Author:

Chen Yuzhou,Tao RanORCID,Downs Joni

Abstract

The equitable allocation of COVID-19 vaccines is a critical challenge worldwide, given that the pandemic has been disproportionally affecting economically disadvantaged racial and ethnic groups. In the United States, the ongoing implementation efforts at different administrative levels and districts, to some extent, are standing in conflict with commitments to mitigate inequities. In this study, we developed a spatial optimization model to choose the best locations for vaccination sites. The model is a modified two-step maximal covering location problem (MCLP). It aims at maximizing the number of residents who can conveniently access the sites and mitigating inequity issues by prioritizing disadvantaged population groups who live in geographic areas identified through the CDC’s Social Vulnerability Index (SVI). We conducted our study using the case of Hillsborough County, Florida. We found that by reserving up to 30% of total vaccines for highly vulnerable communities, our model can optimize location choices for vaccination sites to provide effective coverage for residents at large while prioritizing disadvantaged groups of people. A series of sensitivity analyses have been performed to evaluate the impact of parameters such as site capacity and distance threshold. The model has the potential to guide the future allocation of critical medical resources in the U.S. and other countries.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference8 articles.

1. Poverty, inequality and COVID-19: the forgotten vulnerable

2. National Strategy for the COVID-19 Response and Pandemic Preparedness: January 2021;Biden,2021

3. Framework for Equitable Allocation of COVID-19 Vaccine,2020

4. Equitable allocation of COVID-19 vaccines in the United States

5. Optimal Selection of COVID-19 Vaccination Sites at the Municipal Level

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3