Fully Digital versus Conventional Workflows for Fabricating Posterior Three-Unit Implant-Supported Reconstructions: A Prospective Crossover Clinical Trial

Author:

Hashemi Ali Mahmoud,Hashemi Hamid Mahmoud,Siadat Hakimeh,Shamshiri Ahmadreza,Afrashtehfar Kelvin IanORCID,Alikhasi MarziehORCID

Abstract

This study assessed the clinical variables influencing the success of three-unit implant-supported fixed dental prostheses (ISFDPs) fabricated using either fully digital or conventional workflows. The clinical trial evaluated 10 patients requiring three-unit ISFDPs in the posterior mandible. Maxillomandibular relation records, and digital and conventional impressions were obtained from each patient using an intraoral scanner (IoS) and polyvinylsiloxane (PVS), and the frameworks were fabricated using zirconia and cobalt–chromium, respectively. A 2 µm accuracy scanner scanned the conventional master casts and standard reference models. The stereolithography (STL) files of the digital and conventional impressions were superimposed on the standard model file, and the accuracy was calculated with the best-fit algorithm. The framework adaptation and passivity were assessed using the one-screw and screw resistance tests. The time required for occlusal adjustment of both types of reconstructions, including the duration of the whole treatment, was recorded. The aesthetic appearance of ISFDPs was rated by each patient and clinician using a self-administered visual analogue scale questionnaire and the FDI World Dental Federation aesthetic parameters, respectively. The sample size was based on the power calculation, and alpha was set at 0.05 for the statistical analyses. The impression accuracy, framework adaptation and passivity, and reconstructions aesthetics did not significantly differ between the digital and conventional approaches. The total fabrication time was significantly shorter using the digital workflow. Within the limitations of this clinical study, the fully digital workflow can be used for the fabrication of ISFDPs with a clinical outcome comparable to that of the conventional workflow.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3