Bismuth-Decorated Beta Zeolites Catalysts for Highly Selective Catalytic Oxidation of Cellulose to Biomass-Derived Glycolic Acid

Author:

Wang FenfenORCID,Qu Dongxue,Wang Shaoshuai,Liu Guojun,Zhao Qiang,Hu Jiaxue,Dong Wendi,Huang Yong,Xu Jinjia,Chen Yuhui

Abstract

Catalytic conversion of cellulose to liquid fuel and highly valuable platform chemicals remains a critical and challenging process. Here, bismuth-decorated β zeolite catalysts (Bi/β) were exploited for highly efficient hydrolysis and selective oxidation of cellulose to biomass-derived glycolic acid in an O2 atmosphere, which exhibited an exceptionally catalytic activity and high selectivity as well as excellent reusability. It was interestingly found that as high as 75.6% yield of glycolic acid over 2.3 wt% Bi/β was achieved from cellulose at 180 °C for 16 h, which was superior to previously reported catalysts. Experimental results combined with characterization revealed that the synergetic effect between oxidation active sites from Bi species and surface acidity on H-β together with appropriate total surface acidity significantly facilitated the chemoselectivity towards the production of glycolic acid in the direct, one-pot conversion of cellulose. This study will shed light on rationally designing Bi-based heterogeneous catalysts for sustainably generating glycolic acid from renewable biomass resources in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3