Effective Electro-Activation Process of Hydrogen Peroxide/Peroxydisulfate Induced by Atomic Hydrogen for Rapid Oxidation of Norfloxacin over the Carbon-Based Pd Nanocatalyst

Author:

Yang Ling,Cui Mengmeng,Cheng Shiyu,Zhang Shaoqi,Li Ying,Luo Te,Zheng Tianyu,Li Hua

Abstract

Peroxydisulfate (PDS) can be activated by electrochemistry, for which using atom H* as an activator is feasibly favorable in theoretical and experimental applications. Studies have shown that atomic H* can cleave the peroxide bond as a single-electron reducing agent in Na2S2O8 to generate SO4•−, thus achieving the degradation of pollutants. Herein, Pd nanoparticles synthesized by in an in situ solution were dispersed in carbon black and then loaded on carbon felt, called Pd/C@CF, as the cathode for peroxydisulfate activation. This showed an ideal degradation effect on a small electrode (10 mm × 10 mm). Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) tests were taken to verify the significant increase in the yield of the reduction of Na2S2O8 by H*. The degradation experiments and free-radical scavenging experiment confirmed that the atomic H* was the dominant component triggering the activation of PDS to generate SO4•−. A Pd/C@CF composite electrodes have low pH dependence, high stability and recyclability, etc., which has many potential practical applications in wastewater treatment. In addition, H* can also reduce H2O2 to •OH by breaking the peroxide bond, so the removal of pollutants by the same amount of H2O2 and Na2S2O8 under the same conditions is compared, and their application prospects are analyzed and compared.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3