The Control Strategy and Kinetics of VFAs Production in an ASBR Reactor Treating Low-Strength Mariculture Wastewater

Author:

Gao Fan,Zhang Cuiya,Sun Qinbang,Xu GuangjingORCID

Abstract

As an environment-friendly wastewater treatment process, the anaerobic fermentation process has been widely used for the pretreatment of high-strength wastewater. However, it is rarely applied to treat low-strength wastewater due to low methane recovery. In this study, anaerobic fermentation treating low-strength mariculture wastewater was studied in an anaerobic sequencing batch reactor (ASBR) with a COD removal rate of 75%. Anaerobic fermentation was successfully controlled at the acidification stage by increasing COD loading. As the greenhouse gas emission decreased, the residual organics were enough for biological nutrients’ removal. Fluorescence in situ hybridization results showed that the dominant bacteria in the ASBR were acidogenic bacteria and methanogens, accounting for 39.7% and 46.5% of the total bacteria, respectively. Through the calculation processing of the experimental data, the order of the anaerobic fermentation reaction was a second-order reaction. The kinetic parameters of low-strength organic wastewater treatment were determined by using the Grau second-order substrate removal model, Stover–Kincannon model, Monod model and Haldane model. The maximum rate removal constant Umax, sludge yield coefficient Y and inhibition constant Ki were 1.157 g/(L·d), 0.153 mgVSS/mgCOD and 670 mg/L, respectively. It provided data support for the practical application of the anaerobic fermentation treating low-strength wastewater.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3