Tracking Key Industrial Sectors for CO2 Mitigation through the Driving Effects: An Attribution Analysis

Author:

Wang Xian’en,Hu Tingyu,Song JunnianORCID,Duan Haiyan

Abstract

The heavy pressure to improve CO2 emission control in industry requires the identification of key sub-sectors and the clarification of how they mitigate CO2 emissions through various actions. Focusing on 30 Chinese provincial regions, this study quantifies the contribution of each industrial sector to regional CO2 mitigation by combining the logarithmic mean Divisia index with attribution analysis and extract the key sectors of CO2 mitigation for each region. Results indicate that during 2010–2019, significant emission reduction was achieved through energy intensity (74%) in Beijing, while emission reductions were attained through industrial structure changes for Anhui (50%), Henan (45%), and Chongqing (45%). The contribution to emission reduction through energy structures is not significant. The production and supply of power and heat (PSPH) is a central factor in CO2 mitigation through all three inhibitive factors. Petroleum processing and coking (PPC) generally contributes to emission reduction through energy structures, while the smelting and pressing of ferrous metals (SPMF) through changes in industrial structures and energy intensity. PSPH and SPMF, in most regions, have not achieved the emission peak. Except in the case of coal mining and dressing (CMD), CO2 emissions in other key sectors have almost been decoupled from industrial development. CMD effectively promotes CO2 mitigation in Anhui, Henan, and Hunan, with larger contribution of PPC in Tianjin, Xinjiang, Heilongjiang, and that of smelting and pressing of nonferrous metals in Yunnan and Guangxi. The findings help to better identify key sectors across regions that can mitigate CO2 emissions, while analyzing the critical emission characteristics of these sectors, which can provide references to formulating region- and sector-specific CO2 mitigation measures for regions at different levels of development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3