A Study of Carbon Emission Efficiency in Chinese Provinces Based on a Three-Stage SBM-Undesirable Model and an LSTM Model

Author:

Niu Huayong,Zhang ZhishuoORCID,Xiao Yao,Luo Manting,Chen Yumeng

Abstract

As a major carbon-emitting country, there is an urgent need for China to reduce carbon emissions. Studying the carbon emission efficiency of each province helps us to learn about the characteristics and evolution of regional carbon emissions, which is important for proposing effective and targeted measures to achieve the carbon peaking and carbon neutrality goals. This paper measures the carbon emission efficiency of 30 Chinese provinces from 2006 to 2019 based on a three-stage SBM-undesirable model and explores external drivers using stochastic frontier models. The results of the SBM-undesirable model show that the inter-provincial carbon emission efficiency is unevenly distributed and shows a big difference. From the results of the stochastic frontier model analysis, external drivers such as the intensity of finance in environmental protection, the level of economic development, the industrial structure, the level of urbanization, the degree of openness and the level of science as well as technology innovation all have an impact on the emission efficiency. In terms of LSTM model prediction, the model shows an excellent fitting effect, which provides a possible path for carbon emission efficiency prediction. Finally, based on the empirical results and the actual situation of each province in China, this paper proposes relevant feasible suggestions.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference35 articles.

1. Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis

2. The impact of changes in economic development on carbon emission intensity in China;Zhang;Econ. Res. J.,2010

3. Communication The evolution of the “carbonization index” in developing countries

4. Relationship between total industrial carbon emissions and carbon productivity in Shanghai;Chen;China Popul. Resour. Environ.,2010

5. Technological innovation, spatial agglomeration and regional carbon productivity;Lin;China Popul. -Resour. Environ.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3