Forecasting Model Based on Lifestyle Risk and Health Factors to Predict COVID-19 Severity

Author:

Firza NajadaORCID,Monaco Alfonso

Abstract

The COVID-19 pandemic has now spread worldwide, becoming a real global health emergency. The main goal of this work is to present a framework for studying the impact of COVID-19 on Italian territory during the first year of the pandemic. Our study was based on different kinds of health features and lifestyle risk factors and exploited the capabilities of machine learning techniques. Furthermore, we verified through our model how these factors influenced the severity of the pandemics. Using publicly available datasets provided by the Italian Civil Protection, Italian Ministry of Health and Italian National Statistical Institute, we cross-validated the regression performance of a Random Forest model over 21 Italian regions. The robustness of the predictions was assessed by comparison with two other state-of-the-art regression tools. Our results showed that the proposed models reached a good agreement with data. We found that the features strongly associated with the severity of COVID-19 in Italy are the people aged over 65 flu vaccinated (24.6%) together with individual lifestyle behaviors. These findings could shed more light on the clinical and physiological aspects of the disease.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference41 articles.

1. A Geroscience Perspective on COVID-19 Mortality;Promislow;J. Gerontol. Ser. A,2020

2. Association of Country-wide Coronavirus Mortality with Demographics, Testing, Lockdowns, and Public Wearing of Masks;Leffler;Am. J. Trop. Med. Hyg.,2020

3. COVID-19 and Italy: What next?;Remuzzi;Lancet,2020

4. Italy into three parts: The space–time spread of contagion;Casti;Vaccines,2021

5. Conclusions: Towards spatial vulnerability management for a new “happy” living;Casti;Mod. Cartogr. Ser.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3