A New Model Algorithm for Estimating the Inhalation Exposure Resulting from the Spraying of (Semi)-Volatile Binary Liquid Mixtures (SprayEva)

Author:

Tischer Martin,Meyer Jessica

Abstract

The spraying of liquid multicomponent mixtures is common in many professional and industrial settings. Typical examples are cleaning agents, additives, coatings, and biocidal products. In all of these examples, hazardous substances can be released in the form of aerosols or vapours. For occupational and consumer risk assessment in regulatory contexts, it is therefore important to know the exposure which results from the amount of chemicals in the surrounding air. In this research, a mechanistic mass balance model has been developed that covers the spraying of (semi)-volatile substances, taking into account combined exposure to spray mist, evaporation from droplets, and evaporation from surfaces as well as the nonideal behaviour of components in liquids and backpressure effects. For wall-spraying scenarios, an impaction module has been developed that quantifies the amount of overspray and the amount of material that lands on the wall. Mechanistically, the model is based on the assumption that continuous spraying can be approximated by a number of sequentially released spray pulses, each characterized by a certain droplet size, where the total aerosol exposure is obtained by summation over all release pulses. The corresponding system of differential equations is solved numerically using an extended Euler algorithm that is based on a discretisation of time and space. Since workers typically apply the product continuously, the treated area and the corresponding evaporating surface area grows over time. Time-dependent concentration gradients within the sprayed liquid films that may result from different volatilities of the components are therefore addressed by the proposed model. A worked example is presented to illustrate the calculated exposure for a scenario where aqueous solutions of H2O2 are sprayed onto surfaces as a biocidal product. The results reveal that exposure to H2O2 aerosol reaches relevant concentrations only during the spraying phase. Evaporation from sprayed surfaces takes place over much longer time periods, where backpressure effects caused by large emission sources can influence the shape of the concentration time curves significantly. The influence of the activity coefficients is not so pronounced. To test the plausibility of the developed model algorithm, a comparison of model estimates of SprayExpo, SprayEva, and ConsExpo with measured data is performed. Although the comparison is based on a limited number (N = 19) of measurement data, the results are nevertheless regarded as supportive and acceptable for the plausibility and predictive power of SprayEva.

Funder

Federal Institute for Occupational Safety and Health

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference39 articles.

1. Arbeitsplatzbelastungen bei der Verwendung von Biozidprodukten—Teil 1. Inhalative und Dermale Expositionsdaten für das Versprühen von Flüssigen Biozidprodukten;Koch,2004

2. Calibration of the Dermal Advanced REACH Tool (dART) Mechanistic Model

3. Regulation (EU) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH);European Parliament and the Council [EP],2006

4. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC);European Parliament and the Council,2009

5. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products;European Parliament and the Council [EP],2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3