Spatio-Temporal Variations of Zooplankton and Correlations with Environmental Parameters around Tiaowei Island, Fujian, China

Author:

Zhang ZhiORCID,Shi Zhizhou,Yu Zefeng,Zhou Konglin,Lin Jing,Wu Jiangyue,Mu Jingli

Abstract

The present study illustrates zooplankton dynamics in relation to environmental factors from the surrounding area of Tiaowei Island based on ten seasonal sampling cruises over three years. A total of 116 species of zooplankton were collected with a predominance of Copepoda (mainly consisting of Centropagidae, Oithonidae, Acartia, Labidocera and Paracalanus), accounting for 31.6 % of the total number of species. The diversity indices indicated a relatively high richness, abundance and evenness of zooplankton ranging from 2.794 to 4.012 on the Shannon–Wiener index for each cruise. More than 20 species of Cnidaria medusae are found as gelatinous organisms, which not only compete with fish but also potentially cause disasters. Significant seasonal variations were detected in both the zooplankton structure and environmental variables. NMDS illustrated a highly overlapping community structure in spring, autumn and winter, while the zooplankton composition in the summer was different from that of the other three seasons with a higher diversity index. Meanwhile, out of thirteen environmental parameters, eight varied significantly among seasons but there were no significant variations among stations. The biota–environmental relationship following a redundancy analysis revealed that water temperature, pH, salinity, dissolved oxygen and suspended particulate composition were the main environmental parameters, seasonally impacting the zooplankton communities. Planktonic larvae (such as nauplius larvae and branchyura zoea) and some zooplankton (including Corophium sinensis and Oithonasimilis) were significantly vulnerable to the dynamics of suspended particulate composition and water temperature.

Funder

the Natural Science Foundation of Fujian Province of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3