Microbiologically Influenced Corrosion of Q235 Carbon Steel by Ectothiorhodospira sp.

Author:

Qi HongORCID,Wang Yingsi,Feng Jin,Peng Ruqun,Shi Qingshan,Xie XiaobaoORCID

Abstract

The biological sulfur cycle is closely related to iron corrosion in the natural environment. The effect of the sulfur-oxidising bacterium Ectothiorhodospira sp., named PHS-Q, on the metal corrosion behaviour rarely has been investigated. In this study, the corrosion mechanism of Q235 carbon steel in a PHS-Q-inoculated medium is discussed via the characterization of the morphology and the composition of the corrosion products, the measurement of local corrosion and the investigation of its electrochemical behaviour. The results suggested that, initially, PHS-Q assimilates sulfate to produce H2S directly or indirectly in the medium without sulfide. H2S reacts with Fe2+ to form an inert film on the coupon surface. Then, in localised areas, bacteria adhere to the reaction product and use the oxidation of FeS as a hydrogen donor. This process leads to a large cathode and a small anode, which incurs pitting corrosion. Consequently, the effect of PHS-Q on carbon steel corrosion behaviour is crucial in an anaerobic environment.

Funder

GDAS’ Project of Science and Technology Development

Science and Technology Planning Project of Guangzhou

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3