Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components

Author:

Xu Zhi,Guo Zhaohui,Xie Huimin,Hu Yulian

Abstract

The pyrolysis characteristics of cadmium (Cd)-impregnated cellulose, hemicellulose, and lignin were studied to elucidate the pyrolysis velocity and deoxygenation characteristics of Cd-contaminated rice straw. The results show that Cd significantly affects the pyrolysis characteristics of a single biomass component. With a heating rate of 5 °C·min−1 and a Cd loading of 5%, the initial pyrolysis temperature of cellulose and hemicellulose decreases while that of lignin increases. The maximum pyrolysis velocity of cellulose, hemicellulose, and lignin is decreased by 36.6%, 12.4%, and 15.2%, respectively. Cd increases the pyrolysis activation energy of the three components and inhibits their deoxygenation. For the pyrolysis of Cd-contaminated rice straw, both the initial depolymerization temperature and the pyrolysis velocity of hemicellulose is reduced, while the pyrolysis velocity of cellulose is accordingly increased. When Cd loading amplifies to 0.1%, 1%, and 5%, the maximum pyrolysis velocity of hemicellulose is decreased by 7.2%, 10.5%, and 21.3%, while that of cellulose is increased by 8.4%, 62.1%, and 97.3%, respectively. Cd reduces the release of volatiles and gas from rice straw, such as CO2, CO, and oxygen-containing organics, which retains more oxygen and components in the solid fraction. This research suggested that Cd retards the pyrolysis velocity and deoxygenation of rice straw, being therefore beneficial to obtaining more biochar.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3