A Social Network Analysis Approach to COVID-19 Community Detection Techniques

Author:

Choudhury TanupriyaORCID,Arunachalam RohiniORCID,Khanna AbhirupORCID,Jasinska ElzbietaORCID,Bolshev VadimORCID,Panchenko VladimirORCID,Leonowicz ZbigniewORCID

Abstract

Machine learning techniques facilitate efficient analysis of complex networks, and can be used to discover communities. This study aimed use such approaches to raise awareness of the COVID-19. In this regard, social network analysis describes the clustering and classification processes for detecting communities. The background of this paper analyzed the geographical distribution of Tambaram, Chennai, and its public health care units. This study assessed the spatial distribution and presence of spatiotemporal clustering of public health care units in different geographical settings over four months in the Tambaram zone. To partition a homophily synthetic network of 100 nodes into clusters, an empirical evaluation of two search strategies was conducted for all IDs centrality of linkage is same. First, we analyzed the spatial information between the nodes for segmenting the sparse graph of the groups. Bipartite The structure of the sociograms 1–50 and 51–100 was taken into account while segmentation and divide them is based on the clustering coefficient values. The result of the cohesive block yielded 5.86 density values for cluster two, which received a percentage of 74.2. This research objective indicates that sub-communities have better access to influence, which might be leveraged to appropriately share information with the public could be used in the sharing of information accurately with the public.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference30 articles.

1. IASP Announces Revised Definition of Pain https://www.iasp-pain.org/publications/iasp-news/iasp-announces-revised-definition-of-pain/

2. Leczenie Bólu;Wordliczek,2007

3. Abdominal Aortic Aneurysms and Risk Factors for Adverse Events

4. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms

5. Abdominal aortic aneurysm

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3