Pharmacophore Modeling Using Machine Learning for Screening the Blood–Brain Barrier Permeation of Xenobiotics

Author:

Kumar SauravORCID,Deepika DeepikaORCID,Kumar VikasORCID

Abstract

Daily exposure to xenobiotics affects human health, especially the nervous system, causing neurodegenerative diseases. The nervous system is protected by tight junctions present at the blood–brain barrier (BBB), but only molecules with desirable physicochemical properties can permeate it. This is why permeation is a decisive step in avoiding unwanted brain toxicity and also in developing neuronal drugs. In silico methods are being implemented as an initial step to reduce animal testing and the time complexity of the in vitro screening process. However, most in silico methods are ligand based, and consider only the physiochemical properties of ligands. However, these ligand-based methods have their own limitations and sometimes fail to predict the BBB permeation of xenobiotics. The objective of this work was to investigate the influence of the pharmacophoric features of protein–ligand interactions on BBB permeation. For these purposes, receptor-based pharmacophore and ligand-based pharmacophore fingerprints were developed using docking and Rdkit, respectively. Then, these fingerprints were trained on classical machine-learning models and compared with classical fingerprints. Among the tested footprints, the ligand-based pharmacophore fingerprint achieved slightly better (77% accuracy) performance compared to the classical fingerprint method. In contrast, receptor-based pharmacophores did not lead to much improvement compared to classical descriptors. The performance can be further improved by considering efflux proteins such as BCRP (breast cancer resistance protein), as well as P-gp (P-glycoprotein). However, the limited data availability for other proteins regarding their pharmacophoric interactions is a bottleneck to its improvement. Nonetheless, the developed models and exploratory analysis provide a path to extend the same framework for environmental chemicals, which, like drugs, are also xenobiotics. This research can help in human health risk assessment by a priori screening for neurotoxicity-causing agents.

Funder

Spanish Ministry of Science, Innovation and Universities

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3