Modification Effect of PARP4 and ERCC1 Gene Polymorphisms on the Relationship between Particulate Matter Exposure and Fasting Glucose Level

Author:

Kim Jin HeeORCID,Lee Seungho,Hong Yun-Chul

Abstract

Particulate matter (PM) has been linked to adverse health outcomes, including insulin resistance (IR). To evaluate the relationships between exposures to PM10, PM2.5–10, and PM2.5; the serum level of fasting glucose, a key IR indicator; and effects of polymorphisms of two repair genes (PARP4 and ERCC1) on these relations, PMs exposure data and blood samples for glucose measurement and genotyping were collected from 527 Korean elders. Daily average levels of PMs during 8 days, from 7 days before examination to the health examination day (from lag day 7 to lag day 0), were used for association analyses, and mean concentrations of PM10, PM2.5–10, and PM2.5 during the study period were 43.4 µg/m3, 19.9 µg/m3, and 23.6 µg/m3, respectively. All three PMs on lag day 4 (mean, 44.5 µg/m3 for PM10, 19.9 µg/m3 for PM2.5–10, and 24.3 µg/m3 for PM2.5) were most strongly associated with an increase in glucose level (percent change by inter-quartile range-change of PM: (β) = 1.4 and p = 0.0023 for PM10; β = 3.0 and p = 0.0010 for PM2.5–10; and β = 2.0 and p = 0.0134 for PM2.5). In particular, elders with PARP4 G-C-G or ERCC1 T-C haplotype were susceptible to PMs exposure in relation to glucose levels (PARP4 G-C-G: β = 2.6 and p = 0.0006 for PM10, β = 3.5 and p = 0.0009 for PM2.5–10, and β = 1.6 and p = 0.0020 for PM2.5; ERCC1 T-C: β = 2.2 and p = 0.0016 for PM10, β = 3.5 and p = 0.0003 for PM2.5–10, and β = 1.2 and p = 0.0158 for PM2.5). Our results indicated that genetic polymorphisms of PARP4 and ERCC1 could modify the relationship between PMs exposure and fasting glucose level in the elderly.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3