Abstract
Technical change essentially drives regional social and economic development, and how technical change influences the regional sustainable development of the ecological environment is also of concern. However, technical change is not always neutral, so how does directed technical change affect urban carbon intensity? Is there a spatial spillover effect between these two? In order to answer these above questions, this article first explores the relationship between directed technical change and carbon intensity through the spatial Durbin model; then, it separately analyses whether the relationship between the two in low-carbon and non-low-carbon cities will differ; finally, we performed a robustness test by replacing weights, replacing the explained variable with a lag of one period, and replacing the explained variable. The conclusions are as follows: (1) There is a positive spatial correlation between the carbon intensity of Chinese cities—that is, there is a positive interaction between the carbon intensity of local cities and of neighboring cities. For every 1% change in the carbon intensity of neighboring cities, the carbon intensity of local cities changes by 0.1027% in the same direction. (2) The directed technical change has a significant inhibitory effect on urban carbon intensity, whether in local cities or neighboring cities. However, it is worth mentioning that the direct negative effect is greater in local cities than in neighboring cities. (3) The directed technical change in low-carbon cities has a stronger inhibitory effect on carbon intensity, with a direct effect coefficient of −0.5346 and an indirect effect coefficient of −0.2616. Due to less green policy support in non-low-carbon cities, the inhibitory effect of directed technical change on carbon intensity is weakened; even if the direct effects and indirect effects are superimposed, it is only −0.0510 rather than −0.7962 for low-carbon cities.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献