A Novel Credible Carbon Footprint Traceability System for Low Carbon Economy Using Blockchain Technology

Author:

Ju Chunhua,Shen ZhonghuaORCID,Bao Fuguang,Weng Pengtong,Xu Yihang,Xu ChonghuanORCID

Abstract

To achieve the goal of carbon neutrality, many countries have established regional carbon emission trading markets and tried to build a low-carbon economic system. At present, the implementation of carbon emission trading and low-carbon economic systems faces many challenges such as manipulation, corruption, opacity, lack of trust, and lack of data tracking means. The application of blockchain technology can perfectly solve the above problems. However, the data recorded on a blockchain are often multi-type and heterogeneous, and users at different levels such as regulators, enterprises, and consumers have different requirements for data types and granularity. This requires a quick and trustworthy method for monitoring the carbon footprint of enterprises and products. In this paper, the carbon footprint traceability of enterprises and products is taken as an application scenario, and the distributed traceability concept of “traceability off the chain and verification on the chain” is adopted. By reconstructing the pointer of the file structure of the distributed storage, an interactive traceability structure supporting type filtering is constructed, which enables fast retrieval and locating of carbon emission data in the mixed data on the chain. The experimental results show that using the interactive traceability structure that supports type filtering for traceability not only releases the computing power of full nodes but also greatly improves the traceability efficiency of the long-span transaction chain. The proposed carbon footprint traceability system can rapidly trace and track data on an enterprise’s and a product’s carbon footprint, as well as meet the needs of users at all levels for traceability. It also offers more advantages when handling large amounts of data requests.

Funder

Natural Science Foundation of Zhejiang Province

project of China (Hangzhou) cross-border electricity business school

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3