Fog–Haze Transition and Drivers in the Coastal Region of the Yangtze River Delta

Author:

Lyu Rui,Gao Wei,Peng Yarong,Qian YijieORCID,He Qianshan,Cheng Tiantao,Yu Xingna,Zhao Gang

Abstract

Low-visibility events (LVEs) are severe weather phenomena that are closely linked with anthropogenic pollution, which negatively affects traffic, air quality, human health, and the environment. This study conducted a two-month (from October to December 2019) continuous measurement campaign on Chongming Island in Shanghai to characterize the LVEs transition and its drivers. The LVEs accounted for 38% of the time during the campaign, of which mist accounted for 14%, fog–haze for 13%, haze for 6%, and fog for 5%. The fog and mist mainly occurred from midnight to early morning, while haze mostly occurred during the daytime. Different LVEs were interdependent and transitioned from one to another. Fog generally turned into haze after sunrise, while haze turned into fog after sunset. Their formation and evolution were caused by the combined impacts of meteorological conditions and aerosol particles. It was found that temperature difference was the dominant meteorological factor driving the evolution of LVEs. Within the short term, cooling led to a greater increase in relative humidity than humidification. Radiative cooling during the night promoted the formation of fog and mist. During fog and mist events, cloud condensation nuclei (CCN) were mainly internally mixed due to the impact of fog droplet removal and aqueous/heterogeneous aerosol reactions occurring under high humidity. Increased CCN concentration appeared to increase the fog droplet number and liquid water content in fog events. Overall, conditions of high humidity and high particle loading were conducive to LVEs, whereas conditions of sufficient water vapor at a low particle level and sufficient particles at a low humidity level also caused LVEs. This study provided insights into LVEs classification, evolution scheme, and aerosol roles from a micro point of view. The findings could be useful for improving forecasts of local radiative fog and other LVEs.

Funder

National Key Research and Development Program

Natural Science Foundation of Shanghai

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3