Analysis of the Flammability and the Mechanical and Electrostatic Discharge Properties of Selected Personal Protective Equipment Used in Oxygen-Enriched Atmosphere in a State of Epidemic Emergency

Author:

Dowbysz Adriana,Kukfisz BożenaORCID,Siuta DorotaORCID,Samsonowicz MariolaORCID,Maranda Andrzej,Kiciński WojciechORCID,Wróblewski WojciechORCID

Abstract

Numerous fires occurring in hospitals during the COVID-19 pandemic highlighted the dangers of the existence of an oxygen-enriched atmosphere. At oxygen concentrations higher than 21%, fires spread faster and more vigorously; thus, the safety of healthcare workers and patients is significantly reduced. Personal protective equipment (PPE) made mainly from plastics is combustible and directly affects their safety. The aim of this study was to assess its fire safety in an oxygen-enriched atmosphere. The thermodynamic properties, fire, and burning behavior of the selected PPE were studied, as well as its mechanical and electrostatic discharge properties. Cotton and disposable aprons were classified as combustible according to their LOI values of 17.17% and 17.39%, respectively. Conall Health A (23.37%) and B/C (23.51%) aprons and the Prion Guard suit (24.51%) were classified as self-extinguishing. The cone calorimeter test revealed that the cotton apron ignites the fastest (at 10 s), while for the polypropylene PPE, flaming combustion starts between 42 and 60 s. The highest peak heat release rates were observed for the disposable apron (62.70 kW/m2), Prion Guard suit (61.57 kW/m2), and the cotton apron (62.81 kW/m2). The mean CO yields were the lowest for these PPEs. Although the Conall Health A and B/C aprons exhibited lower pHRR values, their toxic CO yield values were the highest. The most durable fabrics of the highest maximum tensile strength were the cotton apron (592.1 N) and the Prion Guard suit (274.5 N), which also exhibited the lowest electrification capability. Both fabrics showed the best abrasion resistance of 40,000 and 38,000 cycles, respectively. The abrasion values of other fabrics were significantly lower. The research revealed that the usage of PPE made from polypropylene in an oxygen-enriched atmosphere may pose a fire risk.

Funder

This research was supported by the Polish Ministry of Education and Science.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3