Abstract
This study provides a safe and low-cost in-house protocol for RT-qPCR-based detection of SARS-CoV-2 using mouthwash–saliva self-collected specimens to achieve clinical and epidemiological surveillance in a real-time web environment applied to ambulatory populations. The in-house protocol comprises a mouthwash–saliva self-collected specimen, heat virus inactivation, and primers to target virus N-gene region and the human RPP30-gene. Aligning with 209 SARS-CoV-2 sequences confirmed specificity including the Alpha variant from the UK. Development, validation, and statistical comparison with official nasopharyngeal swabbing RT-qPCR test were conducted with 115 specimens of ambulatory volunteers. A web–mobile application platform was developed to integrate a real-time epidemiological and clinical core baseline database with mouthwash–saliva RT-qPCR testing. Nine built-in algorithms were generated for decision-making on testing, confining, monitoring, and self-reports to family, social, and work environments. Epidemiological and clinical follow-up and SARS-CoV-2 testing generated a database of 37,351 entries allowing individual decision-making for prevention. Mouthwash–saliva had higher sensitivity than nasopharyngeal swabbing in detecting asymptomatic and mild symptomatic cases with 720 viral copy number (VCN)/mL as the detection limit (Ct = 37.6). Cycling threshold and viral loading were marginally different (p = 0.057) between asymptomatic (35 Ct ± 2.8; 21,767.7 VCN/mL, range 720–77,278) and symptomatic (31.3 Ct ± 4.5; 747,294.3 VCN/mL, range 1433.6–3.08 × 106). We provided proof-of-concept evidence of effective surveillance to target asymptomatic and moderate symptomatic ambulatory individuals based on integrating a bio-safety level II laboratory, self-collected, low-risk, low-cost detection protocol, and a real-time digital monitoring system. Mouthwash–saliva was effective for SARS-CoV-2 sampling for the first time at the community level.
Funder
CONACYT, Postgraduate College and Laboratory of Epidemiological Risk Analysis
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献