Closed-Loop Microbial Fuel Cell Control System Designed for Online Monitoring of TOC Dynamic Characteristics in Public Swimming Pool

Author:

Chen Haishan,Meng Xiaoping,Liu Dianlei,Wang WeiORCID,Xing Xiaodong,Zhang Zhiyong,Dong ChenORCID

Abstract

Total organic carbon (TOC) in the water of public swimming pools (PSPs) must be monitored online for public health. In order to address the shortcomings of conventional microbial fuel cell biosensor (MFC-biosensor), an innovative biosensor with peculiar closed-loop structure was developed for online monitoring of TOC in PSPs. Its design was based on experimental data, model identification, cybernetics, and digital and real-time simulation. The outcomes of the digital simulation demonstrated that the closed-loop MFC control system possesses the desired structure with a pair of dominant complex-conjugate closed-loop poles (−15.47 ± 7.73j), and the real-time simulation showed that its controller output signals can automatically and precisely track the variation in TOC concentration in PSP water with the desired dynamic response performances; for example, mean delay time was 0.06 h, rise time was 0.12 h, peak time was 0.18 h, maximum overshoot was 7.39%, settling time was 0.22 h, and best fit 0.98. The proposed principle and method of the closed-loop MFC-biosensor control system in the article can also be applied for online monitoring of other substances in water, such as heavy metal ions, chemical toxicants, and so forth, and lay a theoretical foundation for MFC-based online monitoring substances in an aquatic environment.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference28 articles.

1. Outbreaks of waterborne infectious intestinal disease in England and Wales, 1992–5

2. A Swimming Pool-Associated Outbreak of Cryptosporidiosis in British Columbia;Bell;Can. J. Public Health Rev. Can. Sante Publique,1993

3. Surveillance for Waterborne-Disease Outbreaks Associated with Drinking Water–United States, 2001-2002;Blackburn;MMWR Surveill. Summ.,2004

4. Open external circuit for microbial fuel cell sensor to monitor the nitrate in aquatic environment

5. A novel biomonitoring system using microbial fuel cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3