Retrieving Inland Reservoir Water Quality Parameters Using Landsat 8-9 OLI and Sentinel-2 MSI Sensors with Empirical Multivariate Regression

Author:

Meng Haobin,Zhang Jing,Zheng Zhen

Abstract

Improving water quality is one of the top priorities in the global agenda endorsed by the United Nations. To ensure the achievement of this goal, governments have developed plans to continuously monitor the status of inland waters. Remote sensing provides a low-cost, high-frequency, and practical complement to monitoring systems that can cover a large area. However, it is crucial to evaluate the suitability of sensors for retrieving water quality parameters (WQPs), owing to differences in spatial and spectral sampling from different satellites. Taking Shanmei Reservoir in Fuzhou City, Fujian Province as a case study, this study collected and sorted the water quality data measured at the site in 2020 to 2022 and Landsat 8-9 OLI and Sentinel-2 MSI images, simulated the chlorophyll-a (Chl-a) concentration, algae density, and turbidity using empirical multivariate regression, and explored the relationship between different WQPs using correlation analysis and principal component analysis (PCA). The results showed that the fitting effect of Landsat OLI data was better than that of the Sentinel-2 MSI data. The coefficient of determination (R2) values of Chl-a, algal density, and turbidity simulated by Landsat OLI data were 0.70, 0.81, and 0.80, respectively. Furthermore, the parameters of its validation equation were also smaller than those of Sentinel MSI data. The spatial distribution of three key WQPs retrieved from Landsat OLI data shows their values were generally low, with the mean values of the Chl-a concentration, algal density, and turbidity being 4.25 μg/L, 4.11 × 106 cells/L, and 1.86 NTU, respectively. However, from the end of February 2022, the values of the Chl-a concentration and algae density in the reservoir gradually increase, and the risk of water eutrophication also increases. Therefore, it is still necessary to pay continuous attention and formulate corresponding water quality management measures. The correlation analysis shows that the three key WQPs in this study have a high correlation with pH, water temperature (WT), and dissolved oxygen (DO). The results of PCA showed that pH, DO, Chl-a concentration, WT, TN, and CODMn were dominant in PC1, explaining 35.57% of the total variation, and conductivity, algal density, and WT were dominant in PC2, explaining 13.34% of the total variation. Therefore, the water quality of the Shanmei Reservoir can be better evaluated by measuring pH, conductivity, and WT at the monitoring station, or by establishing the regression fitting equations between DO, CODMn, and TN. The regression algorithm used in this study can identify the most important water quality features in the Shanmei Reservoir, which can be used to monitor the nutritional status of the reservoir and provide a reference for other similar inland water bodies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3