Green Infrastructure and Urban-Renewal Simulation for Street Tree Design Decision-Making: Moderating Demands of Stormwater Management, Sunlight and Visual Aesthetics

Author:

Langenheim Nano,White MarcusORCID

Abstract

The design of green infrastructure in urban renewal sites is complex, requiring engagement with existing communities and future sustainable development goals, consideration of existing and future urban forms, changing climatic conditions, and the sites often being in low-lying and flood-prone areas. Traditional street tree decision-making approaches are inadequate for addressing the scale, environmental complexity, and mutability of decisions involved in urban renewal projects—new tree selection approaches that consider complex competing criteria for tree selections addressing stormwater management systems, visual assessment and solar amenity are needed. This paper describes a new method of multi-criteria street design decision modelling that combines outputs from hydrology modelling, digital procedural tree modelling and urban form analysis, with animation and gaming technologies. We evaluate our approach through application to the design of a large-scale, urban renewal project underway in Melbourne, Australia. The results of the study demonstrate the functionality of our model, which allowed the simultaneous output of streetscape visualisation, with tree selection responding to integrated stormwater management infrastructure and flooding, along with the likely overshadowing conditions of urban renewal built-form. Our multi-criteria approach makes a significant contribution to the tools available to urban designers, planners and landscape architects in their pursuit of smarter streetscape design decisions that respond to complex spatial, cultural and climatic urban challenges.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference105 articles.

1. A Simplified Model of Urban Morphology: Application to an Analysis of the Environmental Performance of Cities

2. The New Science of Cities;Batty,2013

3. Solar elevation impact on the heat stress mitigation of pedestrians on tree-lined sidewalks of E-W street canyons – Analysis under Central European heat wave conditions

4. Urban Space and Structures;March,1975

5. Historical Urban Fabrics and the Effect of New Building Shadings on Social Activities—Case Study Tripoli Lebanon;Felix,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3