Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM

Author:

Zhu Junqi,Yang Li,Wang Xue,Zheng Haotian,Gu Mengdi,Li Shanshan,Fang Xin

Abstract

Coal and gas outbursts seriously threaten the mining safety of deep coal mines. The evaluation of the risk grade of these events can effectively prevent the occurrence of safety accidents in deep coal mines. Characterized as a high-dimensional, nonlinear, and small-sample problem, a risk evaluation method for deep coal and gas outbursts based on an improved quantum particle swarm optimization support vector machine (IQPSO-SVM) was constructed by leveraging the unique advantages of a support vector machine (SVM) in solving small-sample, high-dimension, and nonlinear problems. Improved quantum particle swarm optimization (IQPSO) is used to optimize the penalty and kernel function parameters of SVM, which can solve the optimal local risk and premature convergence problems of particle swarm optimization (PSO) and quantum particle swarm optimization (QPSO) in the training process. The proposed algorithm can also balance the relationship between the global search and local search in the algorithm design to improve the parallelism, stability, robustness, global optimum, and model generalization ability of data fitting. The experimental results prove that, compared with the test results of the standard SVM, particle swarm optimization support vector machine (PSO-SVM), and quantum particle swarm optimization support vector machine (QPSO-SVM) models, IQPSO-SVM significantly improves the risk assessment accuracy of coal and gas outbursts in deep coal mines. Therefore, this study provides a new idea for the prevention of deep coal and gas outburst accidents based on risk prediction and also provides an essential reference for the scientific evaluation of other high-dimensional and nonlinear problems in other fields. This study can also provide a theoretical basis for preventing coal and gas outburst accidents in deep coal mines and help coal mining enterprises improve their safety management ability.

Funder

the National Natural Science Foundation of China under the grant

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3