Calcareous Materials Effectively Reduce the Accumulation of Cd in Potatoes in Acidic Cadmium-Contaminated Farmland Soils in Mining Areas

Author:

Gong Sitong,Wang HuORCID,Lou Fei,Qin Ran,Fu Tianling

Abstract

The in situ chemical immobilization method reduces the activity of heavy metals in soil by adding chemical amendments. It is widely used in farmland soil with moderate and mild heavy metal pollution due to its high efficiency and economy. However, the effects of different materials depend heavily on environmental factors such as soil texture, properties, and pollution levels. Under the influence of lead–zinc ore smelting and soil acidification, Cd is enriched and highly activated in the soils of northwestern Guizhou, China. Potato is an important economic crop in this region, and its absorption of Cd depends on the availability of Cd in the soil and the distribution of Cd within the plant. In this study, pot experiments were used to compare the effects of lime (LM), apatite (AP), calcite (CA), sepiolite (SP), bentonite (BN), and biochar (BC) on Cd accumulation in potatoes. The results showed that the application of LM (0.4%), AP (1.4%), and CA (0.4%) had a positive effect on soil pH and cations, and that they effectively reduced the availability of Cd in the soil. In contrast, the application of SP, BN, and BC had no significant effect on the soil properties and Cd availability. LM, AP, and CA treatment strongly reduced Cd accumulation in the potato tubers by controlling the total ‘flux’ of Cd into the potato plants. In contrast, the application of SP and BN promoted the migration of Cd from the root to the shoot, while the effect of BC varied by potato genotype. Overall, calcareous materials (LM, CA, and AP) were more applicable in the remediation of Cd-contaminated soils in the study area.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3