An Approach for Fall Prediction Based on Kinematics of Body Key Points Using LSTM

Author:

Mobasheri Bahareh,Tabbakh Seyed Reza KamelORCID,Forghani Yahya

Abstract

Many studies have used sensors attached to adults in order to collect signals by which one can carry out analyses to predict falls. In addition, there are research studies in which videos and photographs were used to extract and analyze body posture and body kinematics. The present study proposes an integrated approach consisting of body kinematics and machine learning. The model data consist of video recordings collected in the UP-Fall Detection dataset experiment. Three models based on long-short-term memory (LSTM) network—4p-SAFE, 5p-SAFE, and 6p-SAFE for four, five, and six parameters—were developed in this work. The parameters needed for these models consist of some coordinates and angles extracted from videos. These models are easy to apply to the sequential images collected by ordinary cameras, which are installed everywhere, especially on aged-care premises. The accuracy of predictions was as good as 98%. Finally, the authors discuss that, by applying these models, the health and wellness of adults and elderlies will be considerably promoted.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3