Author:
Liu Liyang,Liu Hui,Ma Yiming
Abstract
With the increase in subway travelers, the air quality of underground enclosed spaces at subway stations has attracted much more attention. The study of pollutants exposure assessment, especially fine particulate matter, is important in both pollutant control and metro station design. In this paper, combining pedestrian flow analysis (PFA) and computational fluid dynamics (CFD) simulations, a novel surrogate-assisted particulate matter exposure assessment method is proposed, in which PFA is used to analyze the spatial-temporal movement characteristics of pedestrians to simultaneously consider the location and value of the pedestrian particulate generation source and their exposure streamline to particulate matter; the CFD model is used to analyze the airflow field and particulate matter concentration field in detail. To comprehensively consider the differences in the spatial concentration distribution of particulate matter caused by the time-varying characteristics of the airflow organization state in subway stations, surrogate models reflecting the nonlinear relationship between simulated and measured data are trained to perform accurate pedestrian exposure calculations. The actual measurement data proves the validity of the simulation and calculation methods, and the difference between the calculated and experimental values of the exposure is only about 5%.
Funder
National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献