Carbon Reduction of the Three-Year Air Pollution Control Plan under the LEAP Model Using a GREAT Tool in Panzhihua, China

Author:

Wang JunjieORCID,Zhang Yi,Mei Linde,Xu Xuemei,Yin Hanmei,Feng Xiaoqiong,Chen Junhui

Abstract

In the context of global warming and climate change, various international communities have set different reduction targets for carbon emissions. In 2020, China proposed that CO2 emissions will peak by 2030 and reached a critical period in which carbon reduction is a key strategic direction. Sichuan Academy of Environmental Sciences published the “Panzhihua Three-Year Iron Fist Gas Control Action Plan” in 2021. The measures implemented in the plan only address general considerations of conventional pollutants in the atmosphere. This study established the Panzhihua LEAP model based on the GREAT tool and built four simulation scenarios, including pollutant treatment upgrade (PTU), traffic improvement (TI), boiler remediation (BR), and baseline scenarios for industrial sources, mobile sources, and industrial boilers in policy implementation. It provided a supportive basis for the development of environmental protection measures in Sichuan province to increase the efficiency of carbon emission reduction. The quantitative analysis of the simulation results for the five years from 2020 to 2024 was conducted to discuss the intrinsic links between carbon emissions and energy consumption, market storage, and demand under different scenarios. It concluded that the BR and TI scenarios benefit carbon reduction, while the PTU scenario negatively impacts it. This study provided recommendations for analyzing the carbon footprint at a city-wide level, quantifying the relationship between the implementation of relevant environmental measures and carbon emissions, which are available for policy development that incorporates carbon reduction considerations and offers relevant support for future research.

Funder

Sichuan Province Science and Technology Plan Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3