Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study

Author:

Montella Emma,Ferraro AntoninoORCID,Sperlì Giancarlo,Triassi Maria,Santini StefaniaORCID,Improta GiovanniORCID

Abstract

Background: Neonatal infections represent one of the six main types of healthcare-associated infections and have resulted in increasing mortality rates in recent years due to preterm births or problems arising from childbirth. Although advances in obstetrics and technologies have minimized the number of deaths related to birth, different challenges have emerged in identifying the main factors affecting mortality and morbidity. Dataset characterization: We investigated healthcare-associated infections in a cohort of 1203 patients at the level III Neonatal Intensive Care Unit (ICU) of the “Federico II” University Hospital in Naples from 2016 to 2020 (60 months). Methods: The present paper used statistical analyses and logistic regression to identify an association between healthcare-associated blood stream infection (HABSIs) and the available risk factors in neonates and prevent their spread. We designed a supervised approach to predict whether a patient suffered from HABSI using seven different artificial intelligence models. Results: We analyzed a cohort of 1203 patients and found that birthweight and central line catheterization days were the most important predictors of suffering from HABSI. Conclusions: Our statistical analyses showed that birthweight and central line catheterization days were significant predictors of suffering from HABSI. Patients suffering from HABSI had lower gestational age and birthweight, which led to longer hospitalization and umbilical and central line catheterization days than non-HABSI neonates. The predictive analysis achieved the highest Area Under Curve (AUC), accuracy and F1-macro score in the prediction of HABSIs using Logistic Regression (LR) and Multi-layer Perceptron (MLP) models, which better resolved the imbalanced dataset (65 infected and 1038 healthy).

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3