Characterization of Metallic Off-Flavors in Drinking Water: Health, Consumption, and Sensory Perception

Author:

Mirlohi Susan

Abstract

Characterization of taste- and flavor-producing metals, namely iron and copper, in drinking water is a multifaceted subject. Both metals are essential nutrients, can be toxic, and are known to produce unpleasant tastes and flavor sensations in drinking water. Ingestion of trace metal contaminants through drinking water is a probable source of human exposure. Biochemical mechanisms of metallic flavor perception have been previously described; however, less is known about how variations in salivary constituents might impact individuals’ sensitivities to metallic flavors and beverage consumption behaviors. This research presents findings from in vitro experiments, using artificial human saliva, to better understand the role of salivary lipids and proteins on metallic flavor production as measured by biomarkers of metal-induced oxidative stress. The results indicate that metal-induced lipid oxidation, as measured by thiobarbituric acid reactive substances (TBARS), is dominated by salivary proteins, is slightly inhibited in the presence of salivary nitrite, and is detectable by the TBARS method at and above respective concentrations of 9 µM (0.5 mg/L) and 90 µM (5 mg/L), which are both above the aesthetic standards for iron (0.3 mg/L) and copper (1.0 mg/L) in drinking water. Preliminary study with human subjects indicated that reduction in metallic flavor sensitivity, as measured by the best estimate flavor threshold for ferrous iron among 33 healthy adults aged 19–84 years old (22 females), corresponded with reduced drinking water consumption and increased caloric beverage intake among older subjects (>60 years), as determined by a validated self-reported beverage intake questionnaire. These findings provide insights for further research to examine how salivary constituents can impact humans’ sensory abilities in detecting metallic off-flavors in water, and how reduced metallic flavor sensitivity may influence beverage choices and drinking water consumption.

Funder

Institute for Critical Technology and Applied Science at Virginia Tech

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference89 articles.

1. United States Environmental Protection Agency (USEPA) (2018). Drinking Water Standards and Health Advisories Tables, EPA-822-F-18-001.

2. WHO (2017). Guidelines for Drinking Water Quality.

3. Ömür-Özbek, P. (2012). Global taste and odor survey of water utilities: Final report to the American Water Works Association from the Taste and Odor Committee, AWWA.

4. Tong, H., Li, Z., Hu, X., Xu, W., and Li, Z. (2019). Metals in Occluded Water: A New Perspective for Pollution in Drinking Water Distribution Systems. Int. J. Environ. Res. Public Health, 16.

5. Kirmeyer, G.J. (2000). Guidance Manual for Maintaining Distribution System Water Quality, AWWA Research Foundation and American Water Works Association.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3