Contribution of Fine Roots to Soil Organic Carbon Accumulation in Different Desert Communities in the Sangong River Basin

Author:

Tian Sihui,Liu Xin,Jin BaochengORCID,Zhao Xuechun

Abstract

This study explored the relationship between soil organic carbon (SOC) and root distribution, with the aim of evaluating the carbon stocks and sequestration potential under five plant communities (Alhagi sparsifolia, Tamarix ramosissima, Reaumuria soongorica, Haloxylon ammodendron, and Phragmites communis) in an arid region, the Sangong River watershed desert ecosystem. Root biomass, ecological factors, and SOC in different layers of a 0–100 cm soil profile were investigated. The results demonstrated that almost all living fine root biomass (11.78–34.41 g/m2) and dead fine root biomass (5.64–15.45 g/m2) levels were highest in the 10–20 cm layer, except for the P. communis community, which showed the highest living and dead fine root biomass at a depth of 60–70 cm. Fine root biomass showed strong seasonal dynamics in the five communities from June to October. The biomass levels of the A. sparsifolia (138.31 g/m2) and H. ammodendron (229.73 g/m2) communities were highest in August, whereas those of the T. ramosissima (87.76 g/m2), R. soongorica (66.29 g/m2), and P. communis (148.31 g/m2) communities were highest in September. The SOC of the five communities displayed strong changes with increasing soil depth. The mean SOC value across all five communities was 77.36% at 0–30 cm. The highest SOC values of the A. sparsifolia (3.08 g/kg), T. ramosissima (2.35 g/kg), and R. soongorica (2.34 g/kg) communities were found in June, and the highest value of the H. ammodendron (2.25 and 2.31 g/kg, p > 0.05) community was found in June and September. The highest SOC values of the P. communis (1.88 g/kg) community were found in July. Fine root production and turnover rate were 50.67–486.92 g/m2/year and 1.25–1.98 times per year. The relationships among SOC, fine root biomass, and ecological factors (soil water content and soil bulk density) were significant for all five communities. Based on the results, higher soil water content and soil conductivity favored the decomposition of root litter and increased fine root turnover, thereby facilitating SOC formation. Higher pH and bulk density levels are not conducive to soil biological activity and SOC mineralization, leading to increased SOC levels in desert regions.

Funder

Science and Technology Department of Guizhou Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3