Classifying Young Children with Attention-Deficit/Hyperactivity Disorder Based on Child, Parent, and Family Characteristics: A Cross-Validation Study

Author:

Law Evelyn,Sideridis Georgios,Alkhadim GhadahORCID,Snyder Jenna,Sheridan Margaret

Abstract

We aimed to identify subgroups of young children with differential risks for ADHD, and cross-validate these subgroups with an independent sample of children. All children in Study 1 (N = 120) underwent psychological assessments and were diagnosed with ADHD before age 7. Latent class analysis (LCA) classified children into risk subgroups. Study 2 (N = 168) included an independent sample of children under age 7. A predictive model from Study 1 was applied to Study 2. The latent class analyses in Study 1 indicated preference of a 3-class solution (BIC = 3807.70, p < 0.001). Maternal education, income-to-needs ratio, and family history of psychopathology, defined class membership more strongly than child factors. An almost identical LCA structure from Study 1 was replicated in Study 2 (BIC = 5108.01, p < 0.001). Indices of sensitivity (0.913, 95% C.I. 0.814–0.964) and specificity (0.788, 95% C.I. 0.692–0.861) were high across studies. It is concluded that the classifications represent valid combinations of child, parent, and family characteristics that are predictive of ADHD in young children.

Funder

Society for Developmental and Behavioral Pediatrics

National Institute of Mental Health

National Institutes of Health

Taif University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3