Land-Use Change Enhanced SOC Mineralization but Did Not Significantly Affect Its Storage in the Surface Layer

Author:

Zhang Haikuo,Zheng Xuli,Cai YanjiangORCID,Chang Scott X.ORCID

Abstract

To achieve carbon (C) neutrality and mitigate climate change, it is crucial to understand how converting natural forests to agricultural plantations influences soil organic C (SOC) mineralization. In this study, we investigated the impact of converting evergreen broadleaf forests (EBF) to extensively managed Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) plantations (MBP) in subtropical China on SOC mineralization rate; the concentrations of labile SOC fractions such as dissolved organic C (DOC), microbial biomass C (MBC), and readily oxidizable C (ROC); the activities of C-degrading enzymes (cellobiohydrolase and phenol oxidase); and the abundance of C-degrading enzyme-encoding genes (cbhI and lcc). Three paired soil samples were taken from the surface layer (0–20 cm) of adjacent EBF-MBP sites in Anji County, Zhejiang province. Results showed that converting EBF to MBP significantly increased the SOC mineralization rate as well as soil pH, MBC, cellobiohydrolase, and phenol oxidase activities, and cbhI gene abundance, but did not change other soil properties described above. In addition, structural equation modelling (SEM) showed that the conversion increased SOC mineralization rate through increasing soil pH, cbhI gene abundance, MBC, and cellobiohydrolase and phenol oxidase activities. Our novel finding that converting EBF to extensively managed MBP enhanced SOC mineralization via increasing the activities of C-degrading enzymes suggests that C-degrading enzymes were a key factor regulating SOC mineralization in the extensively managed subtropical bamboo plantations.

Funder

National Natural Science Foundation of China

Research and Development Fund of Zhejiang A&F University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3