Developing Graph Convolutional Networks and Mutual Information for Arrhythmic Diagnosis Based on Multichannel ECG Signals

Author:

Andayeshgar BahareORCID,Abdali-Mohammadi FardinORCID,Sepahvand MajidORCID,Daneshkhah AlirezaORCID,Almasi AfshinORCID,Salari Nader

Abstract

Cardiovascular diseases, like arrhythmia, as the leading causes of death in the world, can be automatically diagnosed using an electrocardiogram (ECG). The ECG-based diagnostic has notably resulted in reducing human errors. The main aim of this study is to increase the accuracy of arrhythmia diagnosis and classify various types of arrhythmias in individuals (suffering from cardiovascular diseases) using a novel graph convolutional network (GCN) benefitting from mutual information (MI) indices extracted from the ECG leads. In this research, for the first time, the relationships of 12 ECG leads measured using MI as an adjacency matrix were illustrated by the developed GCN and included in the ECG-based diagnostic method. Cross-validation methods were applied to select both training and testing groups. The proposed methodology was validated in practice by applying it to the large ECG database, recently published by Chapman University. The GCN-MI structure with 15 layers was selected as the best model for the selected database, which illustrates a very high accuracy in classifying different types of rhythms. The classification indicators of sensitivity, precision, specificity, and accuracy for classifying heart rhythm type, using GCN-MI, were computed as 98.45%, 97.89%, 99.85%, and 99.71%, respectively. The results of the present study and its comparison with other studies showed that considering the MI index to measure the relationship between cardiac leads has led to the improvement of GCN performance for detecting and classifying the type of arrhythmias, in comparison to the existing methods. For example, the above classification indicators for the GCN with the identity adjacency matrix (or GCN-Id) were reported to be 68.24%, 72.83%, 95.24%, and 92.68%, respectively.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3