The Influence Research on Nitrogen Transport and Reaction in the Hyporheic Zone with an In-Stream Structure

Author:

Sun Ruikang,Dong Jiawei,Li Yi,Li Panwen,Liu Yaning,Liu Ying,Feng Jinghong

Abstract

The hyporheic zone (HZ) is important for river ecological restoration as the main zone with nitrogen biochemical processes. The engineering of river ecological restoration can significantly change the hydrodynamics, as well as solute transport and reaction processes, but it is still not fully understood. In this study, nitrogen transport and reaction processes were analyzed in the HZ with an in-stream weir structure. An HZ model was built, and three reactions were considered with different design parameters of the weir structure and different permeability characteristics of porous media. The results show that a structure with a greater height on the overlying surface water enables the species to break through deeper porous media. It promotes the mean spatial reaction rates of nitrification and denitrification and results in increased net denitrification in most cases. In addition, increasing the burial depth of the structure leads to the same variation trends in the mean spatial reaction rates as increasing the structure height. Larger permeability coefficients in porous media can enhance flow exchange and increase mean spatial reaction rates. The results can help deepen the understanding of nitrogen transport and transformation in the HZ and optimize the design parameters and location of the in-stream structure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3